Stone as a siding material has two main options: natural and faux. The price difference between the two can be as much as $20 per sq. ft. Aesthetically, the two options are nearly identical and many of the benefits are the same.
Did you know? Natural stone will last about twice as long as faux stone veneer.
Faux stone, also known as Cast or Manufactured Stone Veneer (MSV) consists of concrete and utilizes dozens of pigments to achieve its color. Mostly it is made to look as close to natural stone as possible.
Often, the beauty of natural stone is overlooked. Rock can be anywhere from light in color, to dark, to even blue and red.
The best mini split HVAC systems deliver excellent energy efficiency and reliable performance you can count on.
Your options include single zone and multi-zone mini split heat pump systems from brands known for high quality. Similar to central heat pumps, they deliver air conditioning and heating.
This buying guide includes our ranked list, plus full reviews of the top ductless mini split systems with details needed to make an informed buying decision. Cost, pros and cons, efficiency ratings, number of zones, system sizes and features are included. At the end of the list, a brief Buying Guide concludes this post.
The Best Ductless Mini Split HVAC Systems
Gree Vireo Gen3 (single zone)
Carrier Infinity (single zone)
Fujitsu Halcyon (single and multi-zone)
Daikin Aurora (single and multi-zone)
Mitsubishi Hyper Heat Systems (single and multi-zone)
Samsung FJM (single zone)
Daikin MXS Series (multi)
LG Multi F & Multi F Max (multi)
Gree Multi+ Ultra and Super+ Multi Ultra (multi zone)
Sunlight made into electricity. It’s that simple. Enough electricity to power not just a few appliances, but an entire home, including transportation in case of battery electric vehicles (BEV) or plug-in hybrids. That’s where we are quickly heading, but let’s deal with the basics of solar power for homes, first.
PV stands for Photovoltaic. — The quantifiable process of converting sunlight (solar) into electrical power. For the conversion to be realized and useful, the right semiconducting material must be in place. — This results in efficiency that helps us put into perspective how solar energy can and does compare to historical methods of producing electrical power.
Solar cells are the fundamental, man-made part. Each cell produces about 1 to 2 watts of power. While that isn’t much, for the small size they are, it’s actually quite sufficient.
Group cells together into modules and stack modules into arrays, and suddenly kilowatts of electric power can be realized. To visualize what we are communicating, check out this short video from the U.S. Department of Energy.
For the solar cell to be effective and efficient, it must be properly housed and protected. Durable glass for its transparency is the obvious choice and results in the modules we call PV solar panels.
A module can be as small as those found on calculators, which date back to mid-20th century technology. Or modules can be arranged as solar arrays, which today is what we consider to be a solar panel system.
Contemporary solar cells are manufactured in about a half dozen ways. The ongoing and still most popular material is crystalline silicon. – Its relatively high efficiency in converting energy supplied by photons to electrical power is why it continues to be popular.
Monocrystalline vs. Polycrystalline Solar Panels
There are two main types of solar panels on the market today: monocrystalline and polycrystalline.
Monocrystalline panels provide anywhere from 17% to 22% solar energy-to-electricity conversion efficiency, while polycrystalline panels achieve between 13% and 16% conversion efficiency.
Thanks to their higher energy conversion efficiency, monocrystalline panels are more costly on a per watt basis than polycrystalline panels, but they do occupy less space on the rooftop.
If a rooftop span and size are limited, then it makes sense to pay a little extra for high-efficiency monocrystalline panels from manufacturers like SunPower, LG, and Panasonic.